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Network Middlebox

Networking devices that provide extra functionalities 
◦ Switches/routers = L2/L3 devices 

◦ All others are called middleboxes
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NAT

Firewalls

IDS/IPS

L7 protocol analyzers

Web/SSL proxies
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Most Middleboxes Deal with TCP Flows
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TCP

UDP

etc

[1] “Comparison of Caching Strategies in Modern 
Cellular Backhaul Networks”, ACM MobiSys 2013.

TCP state management is complex and error-prone!

 TCP dominates the Internet

• 95+% of traffic is TCP [1]

 Flow-processing middleboxes

• Stateful firewalls

• Protocol analyzers

• Cellular data accounting

• Intrusion detection/prevention systems

• Network address translation

• And many others!
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Example: Cellular Data Accounting System

Custom middlebox application

No open-source projects
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Data Accounting System

Gateway

Cellular Core Network

Internet
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Develop Cellular Data Accounting System
For every IP packet, p

sub = FindSubscriber(p.srcIP, p.destIP);

sub.usage += p.length;
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Charge for 
retransmission?

TCP tunneling 
attack? [NDSS’14]

Logically, simple 
process!

For every IP packet, p

if (p is not retransmitted){

sub = FindSubscriber(p.srcIP, p.destIP);

sub.usage += p.length;

}

South Korea

For every IP packet, p

if (p is not retransmitted){

sub = FindSubscriber(p.srcIP, p.destIP);

sub.usage += p.length;

} else { // if p is retransmitted

if (p’s payload != original payload) {

report abuse by the subscriber;   

}

}

Attack Detection
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Cellular Data Accounting Middlebox
Core logic

◦ Determine if a packet is retransmitted

◦ Remember the original payload (e.g, by sampling)

◦ Key: TCP flow management

How to implement? 
◦ Borrow code from open-source IDS (e.g., Snort/Suricata)

◦ Problem: 50~100K code lines tightly coupled with their IDS logic

Another option?
◦ Borrow code from open-source kernel (e.g., Linux/FreeBSD)

◦ Problem: kernel is for one end, so it lacks middlebox semantics

What is the common practice? state-of-the-art?
◦ Implement your own flow management

◦ Problem: repeat it for every custom middlebox
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Programming TCP End-Host Application

Berkeley socket API
◦ Nice abstraction that separates flow management from application

◦ Write better code if you know TCP internals

◦ Never requires you to write TCP stack itself
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TCP application

Berkeley Socket API

TCP/IP stack

User level

Kernel level

 Typical TCP end-host applications

• Middlebox logic

• Packet processing

• Flow tracking

• Flow reassembly

• Spaghetti code?

No clear

separation!

 Typical TCP middleboxes?
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mOS Networking Stack

Reusable networking stack for middleboxes
◦ Programming abstraction & a well-defined set of API

Key concepts
◦ Separation of flow management from custom logic

◦ Event-based middlebox development (event/action)

◦ Per-flow flexible resource consumption

Benefits
◦ Clean, modular development of stateful middleboxes

◦ Developers focus on core logic rather than flow management

◦ High performance flow management on mTCP stack
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Key Abstraction: mOS Monitoring Socket

Represents the middlebox viewpoint on network traffic
◦ Monitors both TCP connections and IP packets

◦ Provides similar API to the Berkeley socket API

9

Custom 
middlebox logic

mOS stack

mOS socket API

Separation of flow management

from custom middlebox logic!

Packets

Flow 
context

Monitoring
socket

User
context

Event 
generation

Custom event handler
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Shared-Nothing Parallel Architecture
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Custom 
middlebox logic

mOS stack*

mOS socket API

User-level packet I/O library

Kernel-level NIC driver (DPDK/PSIO/PCAP)

CPU Core 1

Custom 
middlebox logic

mOS stack

mOS socket API

Core n…

NIC RX 
Queue Symmetric Receive-Side Scaling (NIC)

mOS event ->  
callback function

Thread
TCP flow management
Packet I/O

User
Kernel
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mOS Flow Management

Dual TCP stack management
◦ Track the TCP states of both client and server TCP stacks

Example: a client sends a SYN packet
◦ Client-side state changes from CLOSED to SYN_SENT

◦ Server-side state changes from LISTEN to SYN_RECEIVED 
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mOS stack

emulation

Real 
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Real 

Server 

TCP stack
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State
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mOS Event

Notable condition that merits middlebox processing
◦ Different from TCP socket events

Built-in event (BE)
◦ Events that happen naturally in TCP processing

◦ e.g., packet arrival, connection start/teardown, retransmission, etc.

User-defined event (UDE)
◦ User can define their own event

◦ UDE := base event + filter function

◦ Raised when base event triggers and filter evaluates to TRUE

◦ Nested event: base event can be either BE or UDE

◦ e.g., HTTP request, 3 duplicate ACKs, malicious retransmission

Middlebox logic = a set of <event, event handler> tuples
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Sample Code: Initialization

Sets up a traffic filter in Berkeley packet filter (BPF) syntax

Defines a user-defined event that detects an HTTP request

Uses a built-in event that monitors each TCP connection start event
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static void

thread_init(mctx_t mctx)

{

monitor_filter ft ={0};

int msock; event_t http_event;

msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0);

ft.stream_syn_filter = "dst net 216.58 and dst port 80";

mtcp_bind_monitor_filter(mctx, msock, &ft);

mtcp_register_callback(mctx, msock, MOS_ON_CONN_START, MOS_HK_SND, on_flow_start);

http_event = mtcp_define_event(MOS_ON_CONN_NEW_DATA, chk_http_request);

mtcp_register_callback(mctx, msock, http_event, MOS_HK_RCV, on_http_request);

}
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UDE Filter Function

Called whenever the base event is triggered

If it returns TURE, UDE callback function is called
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static bool chk_http_request(mctx_t m, int sock, int side, event_t event)

{

struct httpbuf *p;

u_char* temp; int r;

if (side != MOS_SIDE_SVR) // monitor only server-side buffer

return false;

if ((p = mtcp_get_uctx(m, sock)) == NULL) {

p = calloc(1, sizeof(struct httpbuf));

mtcp_set_uctx(m, sock, p);

}

r = mtcp_peek(m, sock, side, p->buf + p->len, REQMAX - p->len - 1);

p->len += r;  p->buf[p->len] = 0;

if ((temp = strstr(p->buf, "\n\n")) ||(temp = strstr(p->buf, "\r\n\r\n"))) {

p->reqlen = temp - p->buf;

return true; 

}

return false;

}
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Event Generation Process

Reflects what a real middlbox sees and operates on

Based on the estimation of sender/receiver’s TCP states
◦ E.g., packet arrival: sender’s state has already been updated

◦ Infers the receiver stack update with a new packet
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mOS stack
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Sender TCP 

state update
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Scalable Event Management

Each flow subscribes to a set of events

Each flow can change its own set of events over time
◦ Some flow adds a new event or delete an event

◦ Some flow changes the event handler for an event

Scalability problem
◦ How to manage event sets for 100+K concurrent flows?

Observation: the same event sets are shared by multiple flows

How to represent the event set for a flow?

How to efficiently find the same event set?
◦ When a flow updates its set of events?
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Event Dependency Tree
Represents how a UDE is defined

Start from a built-in event as root
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ON_CONN_NEW_DATA

http_event

YouTube_request_event

ftp_event

e1

e8 e9

e11 e12

v1

s1 New flow

Points to a virtual root that has

a set of dependency trees

s2

on_yt_request

on_ftp_event

Event handler

OPEN NETWORKING SUMMIT 2016mOS networking stack



Update on Event Dependency Tree

s3 adds a new event <e8, f8> to v3

v4 is created with a new event and s3 points to it

s2 adds the same event <e8, f8> to v3

v4 already exists, but how does s2 find v4?
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v3

e1 e7

e9

e11

e10

f11

f10

v4

e1 e7

e9

e11

e10

f11

f10

e8

f8

s2 s3

socket

virtual root

built-in event

UDE

event handler
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Efficient Search for an Event Dependency Tree

Each event dependency tree has an ID
◦ id (virtual root) = XOR sum of hash (event + event handler)

◦ id (v3) = hash (e11 + f11) ⊕ hash (e10 + f10)

New tree id after adding or deleting <e, f> from t
◦ id (t’) = id (t) ⊕ hash (e + f)

◦ Add <e8, f8> to v3?

◦ id(v4) = id(v3) ⊕ hash (e8 + f8)

◦ Remove <e10, f10> from v4?

◦ id (v5) =  id(v4) ⊕ hash (e11 + f11)
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Fine-grained Resource Allocation

Not all middleboxes require full features
◦ Some middleboxes do not require flow reassembly

◦ Some middleboxes monitor only client-side data

◦ No more monitoring after handling certain events

Fine-control resource consumption
◦ Disable flow reassembly but keep only metadata

◦ Enable flow monitoring for one side

◦ Stop flow monitoring in the middle 

◦ Per-flow manipulation with setsockopt()
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// disabling receive buffers for both client and server stacks

int zero = 0; 

if (!(config_monitor_side & MOS_SIDE_CLI))

mtcp_setsockopt(mctx, sock, SOL_MONSOCKET, MOS_CLIBUF, &zero, sizeof(zero));

if (!(config_monitor_side & MOS_SIDE_SVR))

mtcp_setsockopt(mctx, sock, SOL_MONSOCKET, MOS_SVRBUF, &zero, sizeof(zero));
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Current mOS stack API
Socket creation and traffic filter

int     mtcp_socket(mctx_t mctx, int domain, int type, int protocol);

int     mtcp_close(mctx_t mctx, int sock);

int mtcp_bind_monitor_filter(mctx_t mctx, int sock, monitor_filter_t ft);

User-defined event management

event_t mtcp_define_event(event_t ev, FILTER filt);

int mtcp_register_callback(mctx_t mctx, int sock, event_t ev, int hook, CALLBACK cb); 

Per-flow user-level context management

void *  mtcp_get_uctx(mctx_t mctx, int sock);  

void    mtcp_set_uctx(mctx_t mctx, int sock, void *uctx);

Flow data reading

ssize_t mtcp_peek(mctx_t mctx, int sock, int side, char *buf, size_t len); 

ssize_t mtcp_ppeek(mctx_t mctx, int sock, int side, char *buf, size_t count, off_t

seq_off);
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Current mOS stack API
Packet information retrieval and modification

int mtcp_getlastpkt(mctx_t mctx, int sock, int side, struct pkt_info *pinfo);

int mtcp_setlastpkt(mctx_t mctx, int sock, int side, off_t offset, byte *data, uint16_t 

datalen, int option);

Flow information retrieval and flow attribute modification

int mtcp_getsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t *len); 

int mtcp_setsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t len);

Retrieve end-node IP addresses

int mtcp_getpeername(mctx_t mctx, int sock, struct sockaddr *addr, socklen_t *addrlen);

Per-thread context management

mctx_t mtcp_create_context(int cpu); 

int mtcp_destroy_context(mctx_t mctx);

Initialization

int mtcp_init(const char *mos_conf_fname);
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mOS Networking Stack Implementation
Per-thread library TCP stack
◦ ~27K lines of C code (mTCP: ~11K lines)

◦ Based on mTCP user-level TCP stack [NSDI ‘14] 

◦ Exploits parallelism on multicore systems and multiqueue NICs

User-defined event implementation
◦ Designed to scale to arbitrary number of events

◦ Identical events are automatically shared by multiple flows

Applications ported to mOS: ~9x code line reduction
◦ Abacus: 4091 lines to 486 lines

◦ See the next page
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Real-world mOS Applications
mSnort (modified 884 lines)
 Snort with mOS flow management

mAbacus (485 lines)
 Secure cellular data accounting system

mHalfback proxy (128 lines) 
 Low-latency proxy with proactive TCP retransmission

mPRADS (modified 615 lines)
 Pattern matching on flow-reassembled content

mnDPI (modified 765 lines modification)
 Pattern matching on flow-reassembled content

midstat
 Netstat for middlebox

mNAT
 High-performance NAT
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Evaluation: Experiment Setup

mOS applications in inline mode with mOS stream sockets

◦ Flow management and forwarding packets by their flows

◦ 2 x Intel E5-2690 (16 cores, 2.9 GHz), 20 MB L3 cache size, 

◦ 132 GB RAM, 6 x 10 Gbps NICs

Six pairs of clients and servers: 60 Gbps max

◦ Intel E3-1220 v3 (4 cores, 3.1 GHz), 8 MB L3 cache size

◦ 16 GB RAM, 1 x 10 Gbps NIC per machine
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Performance Scalability on Multicores
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 File download traffic with 192,000 concurrent flows

• Each flow downloads an X-byte content in one TCP connection

• A new flow is spawned when a flow terminates

 Two simple applications

• Counting packets per flow (packet arrival event)

• Searching for a string in flow reassembled data (full flow reassembly & DPI)
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Latency Overhead by mOS Applications
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76us
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Event Management Performance

192,000 concurrent flows downloading large files

mOS application searches for a string, dynamically adds a new event

Increases the number of events per flow (4 to 64)

mOS improves the performance by 3.5 to 17.3 Gbps
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Performance Under Selective Resource Consumption
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Real Application Performance

Application original + pcap original + DPDK mOS port

Snort-AC 0.57 Gbps 8.18 Gbps 9.17 Gbps

Snort-DFC 0.82 Gbps 14.42 Gbps 15.21 Gbps

nDPIReader 0.66 Gbps 28.92 Gbps 28.87 Gbps

PRADS 0.42 Gbps 2.03 Gbps 1.90 Gbps
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• Workload: real LTE packet trace (~67 GB)

• 4.5x ~ 28.9x performance improvement

• Mostly due to multi-core aware packet processing (DPDK)

• mOS brings code modularity and correct flow management 
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Conclusion

Current middlebox development suffers from 
◦ Lack of modularity

◦ Lack of readability

◦ Lack of maintainability

Solution: reusable networking stack for middleboxes

mOS stack: abstraction for flow management
◦ Programming abstraction with socket-based API

◦ Event-driven middlebox processing

◦ Efficient resource usage with dynamic resource composition
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mOS Stack Is Open-Sourced
Public source code release of mOS stack/API at github
◦ https://github.com/ndsl-kaist/mOS-networking-stack

mOS online manual
◦ http://mos.kaist.edu/guide/
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Thank you!
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mOS project page

http://mos.kaist.edu/
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