
Developing Flow-processing
Middleboxes with the

mOS Networking Stack

KYOUNGSOO PARK
SCHOOL OF ELECTRICAL ENGINEERING, KAIST

Project homepage: http://mos.kaist.edu/

Network Middlebox

Networking devices that provide extra functionalities
◦ Switches/routers = L2/L3 devices

◦ All others are called middleboxes

2

NAT

Firewalls

IDS/IPS

L7 protocol analyzers

Web/SSL proxies

OPEN NETWORKING SUMMIT 2016mOS networking stack

Most Middleboxes Deal with TCP Flows

3

TCP

UDP

etc

[1] “Comparison of Caching Strategies in Modern
Cellular Backhaul Networks”, ACM MobiSys 2013.

TCP state management is complex and error-prone!

 TCP dominates the Internet

• 95+% of traffic is TCP [1]

 Flow-processing middleboxes

• Stateful firewalls

• Protocol analyzers

• Cellular data accounting

• Intrusion detection/prevention systems

• Network address translation

• And many others!

OPEN NETWORKING SUMMIT 2016mOS networking stack

Example: Cellular Data Accounting System

Custom middlebox application

No open-source projects

4

Data Accounting System

Gateway

Cellular Core Network

Internet

OPEN NETWORKING SUMMIT 2016mOS networking stack

Develop Cellular Data Accounting System
For every IP packet, p

sub = FindSubscriber(p.srcIP, p.destIP);

sub.usage += p.length;

5

Charge for
retransmission?

TCP tunneling
attack? [NDSS’14]

Logically, simple
process!

For every IP packet, p

if (p is not retransmitted){

sub = FindSubscriber(p.srcIP, p.destIP);

sub.usage += p.length;

}

South Korea

For every IP packet, p

if (p is not retransmitted){

sub = FindSubscriber(p.srcIP, p.destIP);

sub.usage += p.length;

} else { // if p is retransmitted

if (p’s payload != original payload) {

report abuse by the subscriber;

}

}

Attack Detection

OPEN NETWORKING SUMMIT 2016mOS networking stack

Cellular Data Accounting Middlebox
Core logic

◦ Determine if a packet is retransmitted

◦ Remember the original payload (e.g, by sampling)

◦ Key: TCP flow management

How to implement?
◦ Borrow code from open-source IDS (e.g., Snort/Suricata)

◦ Problem: 50~100K code lines tightly coupled with their IDS logic

Another option?
◦ Borrow code from open-source kernel (e.g., Linux/FreeBSD)

◦ Problem: kernel is for one end, so it lacks middlebox semantics

What is the common practice? state-of-the-art?
◦ Implement your own flow management

◦ Problem: repeat it for every custom middlebox

6OPEN NETWORKING SUMMIT 2016mOS networking stack

Programming TCP End-Host Application

Berkeley socket API
◦ Nice abstraction that separates flow management from application

◦ Write better code if you know TCP internals

◦ Never requires you to write TCP stack itself

7

TCP application

Berkeley Socket API

TCP/IP stack

User level

Kernel level

 Typical TCP end-host applications

• Middlebox logic

• Packet processing

• Flow tracking

• Flow reassembly

• Spaghetti code?

No clear

separation!

 Typical TCP middleboxes?

OPEN NETWORKING SUMMIT 2016mOS networking stack

mOS Networking Stack

Reusable networking stack for middleboxes
◦ Programming abstraction & a well-defined set of API

Key concepts
◦ Separation of flow management from custom logic

◦ Event-based middlebox development (event/action)

◦ Per-flow flexible resource consumption

Benefits
◦ Clean, modular development of stateful middleboxes

◦ Developers focus on core logic rather than flow management

◦ High performance flow management on mTCP stack

8OPEN NETWORKING SUMMIT 2016mOS networking stack

Key Abstraction: mOS Monitoring Socket

Represents the middlebox viewpoint on network traffic
◦ Monitors both TCP connections and IP packets

◦ Provides similar API to the Berkeley socket API

9

Custom
middlebox logic

mOS stack

mOS socket API

Separation of flow management

from custom middlebox logic!

Packets

Flow
context

Monitoring
socket

User
context

Event
generation

Custom event handler

OPEN NETWORKING SUMMIT 2016mOS networking stack

Shared-Nothing Parallel Architecture

10

Custom
middlebox logic

mOS stack*

mOS socket API

User-level packet I/O library

Kernel-level NIC driver (DPDK/PSIO/PCAP)

CPU Core 1

Custom
middlebox logic

mOS stack

mOS socket API

Core n…

NIC RX
Queue Symmetric Receive-Side Scaling (NIC)

mOS event ->
callback function

Thread
TCP flow management
Packet I/O

User
Kernel

OPEN NETWORKING SUMMIT 2016mOS networking stack

mOS Flow Management

Dual TCP stack management
◦ Track the TCP states of both client and server TCP stacks

Example: a client sends a SYN packet
◦ Client-side state changes from CLOSED to SYN_SENT

◦ Server-side state changes from LISTEN to SYN_RECEIVED

11

mOS stack

emulation

Real

Client

TCP stack

Real

Server

TCP stack

Server side

TCP stack

Receive

buffer
State

Client side

TCP stack

Receive

buffer
State

P

P

OPEN NETWORKING SUMMIT 2016mOS networking stack

mOS Event

Notable condition that merits middlebox processing
◦ Different from TCP socket events

Built-in event (BE)
◦ Events that happen naturally in TCP processing

◦ e.g., packet arrival, connection start/teardown, retransmission, etc.

User-defined event (UDE)
◦ User can define their own event

◦ UDE := base event + filter function

◦ Raised when base event triggers and filter evaluates to TRUE

◦ Nested event: base event can be either BE or UDE

◦ e.g., HTTP request, 3 duplicate ACKs, malicious retransmission

Middlebox logic = a set of <event, event handler> tuples

12OPEN NETWORKING SUMMIT 2016mOS networking stack

Sample Code: Initialization

Sets up a traffic filter in Berkeley packet filter (BPF) syntax

Defines a user-defined event that detects an HTTP request

Uses a built-in event that monitors each TCP connection start event

13

static void

thread_init(mctx_t mctx)

{

monitor_filter ft ={0};

int msock; event_t http_event;

msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0);

ft.stream_syn_filter = "dst net 216.58 and dst port 80";

mtcp_bind_monitor_filter(mctx, msock, &ft);

mtcp_register_callback(mctx, msock, MOS_ON_CONN_START, MOS_HK_SND, on_flow_start);

http_event = mtcp_define_event(MOS_ON_CONN_NEW_DATA, chk_http_request);

mtcp_register_callback(mctx, msock, http_event, MOS_HK_RCV, on_http_request);

}

OPEN NETWORKING SUMMIT 2016mOS networking stack

UDE Filter Function

Called whenever the base event is triggered

If it returns TURE, UDE callback function is called

14

static bool chk_http_request(mctx_t m, int sock, int side, event_t event)

{

struct httpbuf *p;

u_char* temp; int r;

if (side != MOS_SIDE_SVR) // monitor only server-side buffer

return false;

if ((p = mtcp_get_uctx(m, sock)) == NULL) {

p = calloc(1, sizeof(struct httpbuf));

mtcp_set_uctx(m, sock, p);

}

r = mtcp_peek(m, sock, side, p->buf + p->len, REQMAX - p->len - 1);

p->len += r; p->buf[p->len] = 0;

if ((temp = strstr(p->buf, "\n\n")) ||(temp = strstr(p->buf, "\r\n\r\n"))) {

p->reqlen = temp - p->buf;

return true;

}

return false;

}

OPEN NETWORKING SUMMIT 2016mOS networking stack

Event Generation Process

Reflects what a real middlbox sees and operates on

Based on the estimation of sender/receiver’s TCP states
◦ E.g., packet arrival: sender’s state has already been updated

◦ Infers the receiver stack update with a new packet

15

mOS stack

Sender
Sender TCP

state update
P

Packet arrival

Event generation

for sender TCP

state update

Receiver TCP

state update

Event generation

for receiver TCP

state update
Receiver

OPEN NETWORKING SUMMIT 2016mOS networking stack

Scalable Event Management

Each flow subscribes to a set of events

Each flow can change its own set of events over time
◦ Some flow adds a new event or delete an event

◦ Some flow changes the event handler for an event

Scalability problem
◦ How to manage event sets for 100+K concurrent flows?

Observation: the same event sets are shared by multiple flows

How to represent the event set for a flow?

How to efficiently find the same event set?
◦ When a flow updates its set of events?

16OPEN NETWORKING SUMMIT 2016mOS networking stack

Event Dependency Tree
Represents how a UDE is defined

Start from a built-in event as root

17

ON_CONN_NEW_DATA

http_event

YouTube_request_event

ftp_event

e1

e8 e9

e11 e12

v1

s1 New flow

Points to a virtual root that has

a set of dependency trees

s2

on_yt_request

on_ftp_event

Event handler

OPEN NETWORKING SUMMIT 2016mOS networking stack

Update on Event Dependency Tree

s3 adds a new event <e8, f8> to v3

v4 is created with a new event and s3 points to it

s2 adds the same event <e8, f8> to v3

v4 already exists, but how does s2 find v4?

18

v3

e1 e7

e9

e11

e10

f11

f10

v4

e1 e7

e9

e11

e10

f11

f10

e8

f8

s2 s3

socket

virtual root

built-in event

UDE

event handler

OPEN NETWORKING SUMMIT 2016mOS networking stack

Efficient Search for an Event Dependency Tree

Each event dependency tree has an ID
◦ id (virtual root) = XOR sum of hash (event + event handler)

◦ id (v3) = hash (e11 + f11) ⊕ hash (e10 + f10)

New tree id after adding or deleting <e, f> from t
◦ id (t’) = id (t) ⊕ hash (e + f)

◦ Add <e8, f8> to v3?

◦ id(v4) = id(v3) ⊕ hash (e8 + f8)

◦ Remove <e10, f10> from v4?

◦ id (v5) = id(v4) ⊕ hash (e11 + f11)

19

v3

e1 e7

e9

e11

e10

f11

f10

v4

e1 e7

e9

e11

e10

f11

f10

e8

f8

v5

e1 e7

e10

f10

e8

f8

OPEN NETWORKING SUMMIT 2016mOS networking stack

Fine-grained Resource Allocation

Not all middleboxes require full features
◦ Some middleboxes do not require flow reassembly

◦ Some middleboxes monitor only client-side data

◦ No more monitoring after handling certain events

Fine-control resource consumption
◦ Disable flow reassembly but keep only metadata

◦ Enable flow monitoring for one side

◦ Stop flow monitoring in the middle

◦ Per-flow manipulation with setsockopt()

20

// disabling receive buffers for both client and server stacks

int zero = 0;

if (!(config_monitor_side & MOS_SIDE_CLI))

mtcp_setsockopt(mctx, sock, SOL_MONSOCKET, MOS_CLIBUF, &zero, sizeof(zero));

if (!(config_monitor_side & MOS_SIDE_SVR))

mtcp_setsockopt(mctx, sock, SOL_MONSOCKET, MOS_SVRBUF, &zero, sizeof(zero));

OPEN NETWORKING SUMMIT 2016mOS networking stack

Current mOS stack API
Socket creation and traffic filter

int mtcp_socket(mctx_t mctx, int domain, int type, int protocol);

int mtcp_close(mctx_t mctx, int sock);

int mtcp_bind_monitor_filter(mctx_t mctx, int sock, monitor_filter_t ft);

User-defined event management

event_t mtcp_define_event(event_t ev, FILTER filt);

int mtcp_register_callback(mctx_t mctx, int sock, event_t ev, int hook, CALLBACK cb);

Per-flow user-level context management

void * mtcp_get_uctx(mctx_t mctx, int sock);

void mtcp_set_uctx(mctx_t mctx, int sock, void *uctx);

Flow data reading

ssize_t mtcp_peek(mctx_t mctx, int sock, int side, char *buf, size_t len);

ssize_t mtcp_ppeek(mctx_t mctx, int sock, int side, char *buf, size_t count, off_t

seq_off);

21OPEN NETWORKING SUMMIT 2016mOS networking stack

Current mOS stack API
Packet information retrieval and modification

int mtcp_getlastpkt(mctx_t mctx, int sock, int side, struct pkt_info *pinfo);

int mtcp_setlastpkt(mctx_t mctx, int sock, int side, off_t offset, byte *data, uint16_t

datalen, int option);

Flow information retrieval and flow attribute modification

int mtcp_getsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t *len);

int mtcp_setsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t len);

Retrieve end-node IP addresses

int mtcp_getpeername(mctx_t mctx, int sock, struct sockaddr *addr, socklen_t *addrlen);

Per-thread context management

mctx_t mtcp_create_context(int cpu);

int mtcp_destroy_context(mctx_t mctx);

Initialization

int mtcp_init(const char *mos_conf_fname);

22OPEN NETWORKING SUMMIT 2016mOS networking stack

mOS Networking Stack Implementation
Per-thread library TCP stack
◦ ~27K lines of C code (mTCP: ~11K lines)

◦ Based on mTCP user-level TCP stack [NSDI ‘14]

◦ Exploits parallelism on multicore systems and multiqueue NICs

User-defined event implementation
◦ Designed to scale to arbitrary number of events

◦ Identical events are automatically shared by multiple flows

Applications ported to mOS: ~9x code line reduction
◦ Abacus: 4091 lines to 486 lines

◦ See the next page

23OPEN NETWORKING SUMMIT 2016mOS networking stack

Real-world mOS Applications
mSnort (modified 884 lines)
 Snort with mOS flow management

mAbacus (485 lines)
 Secure cellular data accounting system

mHalfback proxy (128 lines)
 Low-latency proxy with proactive TCP retransmission

mPRADS (modified 615 lines)
 Pattern matching on flow-reassembled content

mnDPI (modified 765 lines modification)
 Pattern matching on flow-reassembled content

midstat
 Netstat for middlebox

mNAT
 High-performance NAT

mOS networking stack OPEN NETWORKING SUMMIT 2016 24

Evaluation: Experiment Setup

mOS applications in inline mode with mOS stream sockets

◦ Flow management and forwarding packets by their flows

◦ 2 x Intel E5-2690 (16 cores, 2.9 GHz), 20 MB L3 cache size,

◦ 132 GB RAM, 6 x 10 Gbps NICs

Six pairs of clients and servers: 60 Gbps max

◦ Intel E3-1220 v3 (4 cores, 3.1 GHz), 8 MB L3 cache size

◦ 16 GB RAM, 1 x 10 Gbps NIC per machine

25OPEN NETWORKING SUMMIT 2016mOS networking stack

mOS

applications

6 x 10Gbps6x 10Gbps

Performance Scalability on Multicores

1.42 1.23
4.07 3.25.02 4.5

16.66

11.63

22.84 21.7

53.03

42.46

0

10

20

30

40

50

60

 1 4 16 1 4 16

Th
ro

u
gh

p
u

t
(G

b
p

s)

(# of CPU cores)
Counting packets Searching for a string

64B file 8KB file

26

 File download traffic with 192,000 concurrent flows

• Each flow downloads an X-byte content in one TCP connection

• A new flow is spawned when a flow terminates

 Two simple applications

• Counting packets per flow (packet arrival event)

• Searching for a string in flow reassembled data (full flow reassembly & DPI)

OPEN NETWORKING SUMMIT 2016mOS networking stack

Latency Overhead by mOS Applications

58.4

93.8 93.5
117.4

191.9 193.2

0

50

100

150

200

250

Direct connection Counting packets Searching for a string

Fl
o

w
 c

o
m

p
le

ti
o

n
 t

im
e

(u
s)

64B file 8KB file

27

76us

35us

OPEN NETWORKING SUMMIT 2016mOS networking stack

Event Management Performance

192,000 concurrent flows downloading large files

mOS application searches for a string, dynamically adds a new event

Increases the number of events per flow (4 to 64)

mOS improves the performance by 3.5 to 17.3 Gbps

28OPEN NETWORKING SUMMIT 2016mOS networking stack

Performance Under Selective Resource Consumption

19.67

23.22

35.47

39.22

56.68

29.6

34.18

46.43

51.9

59.97

0

10

20

30

40

50

60

 64 256 1K 4K 16K

Th
ro

u
gh

p
u

t
(G

b
p

s)

File size (B)

full flow management

w/o client buf management

w/o buf management

w/o client side

w/o client side, w/o server buf mgmt.

29OPEN NETWORKING SUMMIT 2016mOS networking stack

Real Application Performance

Application original + pcap original + DPDK mOS port

Snort-AC 0.57 Gbps 8.18 Gbps 9.17 Gbps

Snort-DFC 0.82 Gbps 14.42 Gbps 15.21 Gbps

nDPIReader 0.66 Gbps 28.92 Gbps 28.87 Gbps

PRADS 0.42 Gbps 2.03 Gbps 1.90 Gbps

30

• Workload: real LTE packet trace (~67 GB)

• 4.5x ~ 28.9x performance improvement

• Mostly due to multi-core aware packet processing (DPDK)

• mOS brings code modularity and correct flow management

OPEN NETWORKING SUMMIT 2016mOS networking stack

Conclusion

Current middlebox development suffers from
◦ Lack of modularity

◦ Lack of readability

◦ Lack of maintainability

Solution: reusable networking stack for middleboxes

mOS stack: abstraction for flow management
◦ Programming abstraction with socket-based API

◦ Event-driven middlebox processing

◦ Efficient resource usage with dynamic resource composition

31OPEN NETWORKING SUMMIT 2016mOS networking stack

mOS Stack Is Open-Sourced
Public source code release of mOS stack/API at github
◦ https://github.com/ndsl-kaist/mOS-networking-stack

mOS online manual
◦ http://mos.kaist.edu/guide/

32mOS networking stack OPEN NETWORKING SUMMIT 2016

https://github.com/ndsl-kaist/mOS-networking-stack
http://mos.kaist.edu/guide/

Thank you!

33

mOS project page

http://mos.kaist.edu/

mOS networking stack OPEN NETWORKING SUMMIT 2016

http://mos.kaist.edu/

