
Container Networking

Gaetano Borgione
Sr. Staff Engineer

Gaetano Borgione
Sr. Staff Engineer @ VMware



Gaetano Borgione
Senior Staff Engineer

Cloud Native Applications
VMWare

SDN Technologies @ PLUMgrid
Data Center Networking @ Cisco

Passionate Engineer with special interests on:
Networking Architecture

Engineering Leadership
Product Management

Customer Advocacy
+

…new Networking / Virtualization ideas !!!



Agenda



2017

Agenda

§ Containers, Microservices

§ Container Interfaces, Network Connectivity

§ Service Discovery, Load Balancing

§ Multi-Tenancy, Container Isolation, Micro-Segmentation

§ On-Premise Private Cloud design

4



Containers && Microservices



2017

Containers
• A container image is a lightweight, stand-alone, executable unit of software
• Includes everything needed to run it: code, runtime, system tools, system libraries, settings
• Containerized software run regardless of the environment (i.e. Host OS distro) 
• Containers isolate software from its surroundings

– “smooth out” differences between development and staging environments

• Help reduce conflicts between teams running different software on the same infrastructure

6

What Developers Want:

Portable Fast Light

What IT Ops Needs:

Network
Services

Data 
Persistence

Rich
SLAs

Consistent 
Management

+
Security 
Isolation



2017

Containers “at-a-glance”

Physical Server

Hypervisor

VM VM

Bins/Libraries

App A

Bins/Libraries

App B

Physical Server

Bins/Libraries

App A

Bins/Libraries

App B

Container Engine

Guest OSGuest OS

Host OS Host OS

Containers are isolated, 
but share OS and (where 
appropriate) bins/libraries

Server
with 
VMs

Server
with
Containers

Abstraction at the OS layer rather than hardware layer

7



2017

Microservices: Application Design is changing !!!

Properties of a Microservice
ü Small code base
ü Easy to scale, deploy and throw away
ü Autonomous
ü Resilient

Benefits of a Microservices Architecture
ü A highly resilient, scalable and resource 

efficient application
ü Enables smaller development teams
ü Teams free to use the right languages and 

tools for the job
ü Rapid application development

8



2017

Cloud Native Application
Applications built using the “Microservices” architecture pattern

User mgmt. Payments Inventory

Billing Delivery Notification

API GW Web UI Mobile

• Loosely coupled distributed application
Application tier is decomposed into multiple web services

• Datastore
Each micro service typically has its own datastore

• Packaging
Each microservice is typically packaged in a “Container” 
image

• Teams
Typically a team owns one or more Microservices

9



2017

More on Microservices….

10

• Microservices != Containers
• The idea behind Microservices is to 

separate functionality into small parts that 
are created independently, by different teams,
and possibly even in very different languages

• Microservices communicate with each other 
using language-agnostic APIs 
(e.g. REST)

• The host for each Microservice could be 
a VM, but containers are seen are ideal 
packaging unit to deploy a Microservice => low footprint

https://upload.wikimedia.org/wikipedia/commons/9/9b/
Social_Network_Analysis_Visualization.png



2017

Challenges of running Microservices…
• Service Discovery
• Operational Overhead (100s+ of Services !!!)
• Distributed System... inherently complex
• Service Dependencies

– service fan-out
– dependency services running “hot”

• Traffic / Load each service can handle
• Service Health / Fault Tolerance
• Auto-Scale

11



2017

Applications and Micro-Services

12

Service A

Instance #1

Service A

Instance #2

Service A

Instance #3

Internet

Users accessing 
services

Service B

Instance #1

Service B

Instance #2

Service B

Instance #3

Service C

Instance #1

Service C

Instance #2

Service A

Service B

Service C

External
Network

System
Administrator



Container Interfaces &&
Network Connectivity



2017

Basics of Container Networking

Minimalist Networking requirements: 
• IP Connectivity in Container’s Network 
• IP Address Management (IPAM) and 

Network Device Creation
• External Connectivity via Host NAT or 

Route Advertisement

Bare Metal / Virtual Machine Bare Metal / VM

OS Networking OS Networking

14



Container Interfaces &&
Network Connectivity

Docker



2017

Docker is a “Shipping Container” for Code

16



2017

Docker: The Container Network Model (CNM) Interfacing

17

• Sandbox
– A Sandbox contains the configuration of a container's network stack. This includes management of the 

container's interfaces, routing table and DNS settings. An implementation of a Sandbox could be a 
Linux Network Namespace, a FreeBSD Jail or other similar concept. 

• Endpoint
– An Endpoint joins a Sandbox to a Network. An implementation of an Endpoint could be a veth pair, an 

Open vSwitch internal port or similar
• Network

– A Network is a group of Endpoints that are able to communicate with each-other directly. An 
implementation of a Network could be a VXLAN Segment, a Linux bridge, a VLAN, etc. 

Backend Container

Network 
Sandbox

Backend Network Frontend Network

GW Bridge

Container Host

App Container

Network 
Sandbox

GW Bridge

Container Host

Frontend Container

Network 
Sandbox

GW Bridge

Container Host

External 
Network

Endpoint



2017

Container Network Model (CNM)
• The intention is for CNM (aka libnetwork) to implement and use any kind of networking 

technology to connect and discover containers
• Partitioning, Isolation, and Traffic Segmentation are achieved by dividing network addresses
• CNM does not specify one preferred methodology for any network overlay scheme

18



2017

Docker Host (VM)

Docker networking – Using the defaults

19

int
eth0

19
2.

16
8.

17
8.

0/
24

192.168.178.100

int 
docker 0

172.17.42.1/16

Iptables
Firewall

Linux 
Kernel 
Routing

Linux 
Bridge

‘docker0’

Iptables
Firewall

Iptables
Firewall

int
veth0f00eed 

int
veth27e6b05 

container

container

172.17.0.1/16

172.17.0.2/16



2017

Docker Swarm && libnetwork – Built-In Overlay model

20

Swarm Master

Admin-Clients
docker network …

Distributed Key-Value 
Store node(s)

master writes 
available 
global overlay 
networks in kvs

Swarm Node (Docker Host) Swarm Node (Docker Host)

nodes write 
endpoints seen 
with all their 
details into kvs

Nodes create the 
networks seen in kvs
as new lx bridges

int
eth0

int
eth0

docker_gwbridge
User_defined_net User_defined_net

docker_gwbridge

Each container has two interfaces
• eth0 = Plugs into the overlay
• eth1 = Plugs into a local bridge for 

NAT internet / uplink access 

Overlay networks are 
implemented with fixed 
/ static MAC to VTEP 
mappings

Datacenter of public cloud provider Network



2017

Docker Networking – key points
• Docker adopts the Container Network Model (CNM), providing the following contract 

between networks and containers:
• All containers on the same network can communicate freely with each other
• Multiple networks are the way to segment traffic between containers and should be supported by all drivers
• Multiple endpoints per container are the way to join a container to multiple networks
• An endpoint is added to a network sandbox to provide it with network connectivity

• Docker Engine can create overlay networks on a single host. Docker Swarm can create 
overlay networks that span hosts in the cluster

• A container can be assigned an IP on an overlay network. Containers that use the same 
overlay network can communicate, even if they are running on different hosts

• By default, nodes in the swarm encrypt traffic between themselves and other nodes. 
Connections between nodes are automatically secured through TLS authentication with 
certificates

21



Container Interfaces &&
Network Connectivity

Kubernetes



2017

Kubernetes Node (Minion)
Kubernetes Node (Minion)

Kubernetes Architectural overview

23

Kubernetes Master

Master components are colocated or 
spread across machines

APIs

scheduler Controller Manager
(replication controller, etc)

Distributed Key-Value Store 
node(s) (etcd)

Scheduling 
actuator

REST interface 
(pods, services, 
rep. controllers)

Authentication / 
Authorization

Admin-Clients 
(kubectl, ..)

Kubernetes 
Nodes 

(Minions)

Users accessing 
services

Docker engine

Control Pod

Pod

Pod
cadvisor Pause

Kubelet Kube-Proxy

skyDNS



2017

Quick Overview of Kubernetes

Kubernetes (k8s) = Open Source Container Cluster Manager
• Pods: tightly coupled group of containers
• Replication controller: ensures that a specified number of 

pod "replicas" are running at any one time.
• Networking: Each pod gets its own IP address
• Service: Load balanced endpoint for a set of pods with internal and external

IP endpoints
• Service Discovery: Using env variable injection or SkyDNS with the Service 

• Uses etcd as distributed key-value store
• Has its roots in ‘borg’, Google’s internal container cluster management

24



2017

Kubernetes 
Node 

(Minion)

Kubernetes Node (Minion) – networking details

25

ip route 10.24.1.0/24 10.240.0.3 

• Traffic destined to a POD is 
routed by the IaaS network to the 
Kubernetes node that ‘owns’ the 
subnet

Pod

Pause

Kubernetes 
Node 

(Minion)

Pod

Pause

Pod

Pause

Pod

Pause

crb0 
Linux bridge

int 
cbr0

10.24.1.0/24

10.24.1.2 10.24.1.3 10.24.1.4

10.24.1.1

int 
eth0

10.240.0.3

Iptables
Firewall

Kube-
Proxy

ip route 10.24.2.0/24 10.240.0.4 

• Each POD uses one single IP 
from the nodes IP range

• Every container in the POD 
shares the same IP



2017

Container Network Interface (CNI)
• Kubernetes uses the Container Network Interface (CNI) specification and plug-ins to 

orchestrate networking
• Very differently from CNM, CNI is capable of addressing other containers’ IP addresses without 

resorting to network address translation (NAT) 
• Every time a POD is initialized or removed, the default CNI plug-in is called with the default 

configuration
• This CNI plug-in creates a pseudo interface, attaches it to the relevant underlay network, sets 

IP Address / Routes and maps it to the POD namespace

26
/etc/cni/net.d/10-bridge.conf



2017

Kubernetes Networking – key points
• Kubernets adopts the Container Network Interface (CNI) model to provide a 

contract between networks and containers

• From a user perspective, provisioning networking for a container involves two steps: 
ØDefine the network JSON
ØConnect container to the network 

• Internally, CNI provisioning involves three steps: 
ØRuntime create a network namespace and gives it a name 
ØInvokes the CNI plugin specified in the “type” field of the network JSON. Type field refers to the 

plugin being used and so CNI invokes the corresponding binary
ØPlugin code in turn will create a veth pair, check the IPAM type and data in the JSON, invoke the 

IPAM plugin, get the available IP, and finally assign the IP address to the interface

27



Container Interfaces &&
Network Connectivity

Summary



2017

Container Networking Specifications

Container Networking Model
CNM

• Specification proposed by Docker, 
adopted by projects such as 
libnetwork

• Plugins built by projects such as 
Weave, Project Calico and Kuryr

• Supports only Docker runtime

Container Networking Interface
CNI

• Specification proposed by CoreOS 
and adopted by projects such as 
Kubernetes, Cloud Foundry and 
Apache Mesos

• Plugins built by projects such as 
Weave, Project Calico, Contiv
Networking

• Supports any container runtime
29



2017

CNI and CNM commonalities…
• CNI and CNM models are both driver-based

– provide “freedom of selection” for a specific type of container networking
• Multiple Network drivers can be active and used concurrently

– 1-1 mapping among network type and network driver
• Containers are allowed to join one or more networks
• Container runtime can lunch network in its own namespace

– delegate to the network driver the responsibility of connecting the container to 
the network

30



2017

Container Networking Specifications (cont.)

31



Service Discovery && Load Balancing



2017

Service Anatomy

33

Service

Instance #1

Service

Instance #2

Service

Instance #N

Service 
Registry

Load
Balancer

Service



2017

Client vs Server side Service discovery

• Client talks to Service registry and does 
load balancing.

• Client service needs to be Service registry 
aware.

eg: Netflix OSS

• Client talks to load balancer and load 
balancer talks to Service registry.

• Client service need not be Service 
registry aware

eg: Consul, AWS ELB, K8s, Docker

Client Discovery Server Discovery

34



2017

What should Service Discovery provide ?
• Discovery

– Services need to discover each other dynamically, to get IP address and port detail to 
communicate with other services in the cluster

– Service Registry maintains a database of services and provides an external API 
(HTTP/DNS). Typically implemented as a distributed key, value store

– Registrator registers services dynamically to Service registry by listening to Service 
creation and deletion events

• Health check
– Monitoring Service Instance health dynamically and updates Service registry 

appropriately

• Load balancing
– Traffic destined to a particular service should be dynamically load balanced to “healthy” 

instances providing that service

35



2017

Health Check options…

• Script based check
– User provided script is run periodically to verify health of the service.

• HTTP based check
– Periodic HTTP based check is done to the service IP and endpoint address.

• TCP based check
– Periodic TCP based check is done to the service IP and specified port.

• Container based check
– Health check application is available as a Container. Health Check Manager invokes the 

Container periodically to do the health-check.

36



Service Discovery && Load Balancing

Docker



2017

Service Discovery

38

Service Discovery in a nutshell 



2017

Internal Load Balancer - IPVS
• IPVS (IP Virtual Server) implements transport-layer load balancing inside the Linux kernel, so 

called Layer-4 switching
• It’s based on Netfilter and supports TCP, SCTP & UDP, v4 and v7
• IPVS is dynamically configurable, supports 8+ balancing methods, provides health checking

39



2017

Ingress Load Balancing

40



Service Discovery && Load Balancing

Kubernetes



2017

Service Discovery
• Kubernetes provides two options for internal service discovery : 

– Environment variable: When a new Pod is created, environment variables from older services 
can be imported. This allows services to talk to each other. This approach enforces ordering in 
service creation.

– DNS: Every service registers to the DNS service; using this, new services can find and talk to 
other services. Kubernetes provides the kube-dns service for this. 

• Kubernetes provides several ways to expose services to the outside: 
– HostNetwork / HostPort / NodePort: In these methods, Kubernetes exposes the service through 

special ports (30000-32767) of the node IP address. 
– Loadbalancer: In this method, Kubernetes interacts with the cloud provider to create a load 

balancer that redirects the traffic to the Pods. This approach is currently available with GCE
– Ingress Controller : Since Kubernetes v1.2.0 it’s possible to use Kubernetes ingress which 

includes support for TLS and L7 http-based traffic routing

42



2017

• Service name gets mapped to Virtual IP and port using Skydns
• Kube-proxy watches Service changes and updates IPtables. Virtual IP to Service IP, port 

remapping is achieved using IP tables
• Kubernetes does not use DNS based load balancing to avoid some of the known issues 

associated with it

Internal Load Balancing

43



2017

Internal Load Balancing (cont.)

44



2017

Ingress Load Balancing w/t Ingress Controller
• An Ingress is a collection of rules that allow inbound connections to reach the cluster services.
• It can be configured to give services externally-reachable urls, load balance traffic, terminate 

SSL, offer name based virtual hosting etc
– Users request ingress by POSTing the Ingress resource to the API server.

• In order for the Ingress resource to work, the cluster must have an Ingress controller running. 
The Ingress controller is responsible for fulfilling the Ingress dynamically by watching the 
ApiServer’s /ingresses endpoint.

45



2017

Networking for Services

46

Node 1

ProjA-1 ProjB-1

10.10.10.2 10.10.10.3
Guest vSwitch

10.10.10.0/24 Node 2

10.10.20.2 10.10.20.3
Guest vSwitch

10.10.20.0/24

10.10.10.0/24 à 10.114.214.100

10.10.20.0/24 à 10.114.214.101

10.114.214.100/24 10.114.214.101/24

myapp.k8s.com à
{10.10.10.2, 10.10.20.2}

myapp.k8s.com

ProjA-2 ProjB-2
• K8s default networking configures

• Routable IP per POD

• Subnet per node / minion

• K8s Service provides East-West Load 

Balancing 

• Provides DNS based service discovery –

Service Name to IP

• Network Security Policy – in beta

• Not in K8s scope

• Edge LB – e.g. external to frontend 

pods

• Routing of a subnet to k8s node

Node specific routes

Edge LB



Multi-Tenancy
Container Isolation 
Micro-Segmentation



2017

Multi-Tenancy and Application tiering

48



2017

Multi-Tenancy and Application tiering (cont.)

49

Example of Multi-Tenancy Model

Tenant CTenant BTenant A

Project A – 250 GB, 100 vCPU

Access for paulf, jamesz and tinga

Project B – 200 GB, 200 vCPU

Access for kitc, mikep and mikew

Project E – 600 GB, 600 vCPU

Access for martijnb
Kubernetes

Project C – 250 GB, 150 vCPU

Access for stegeler and francisg

Pivotal CF

Kubernetes

VM
VM

VM

Project D – 300 GB, 100 vCPU

Access for tinga

DockerPivotal CF

VM
VM

VM



2017

Multi-Tenancy, Namespaces && Microsegmentation

50

Internet

Users accessing 
services

External
Network

Tenant 2

Tenant 1

Namespace 2

Namespace 1



On-Premise Private Cloud design



2017

From Physical Layout…

Data Center Core

Internet /
Corporate Network

52



…to Overlay-based Networking Model…

53

• CMS to communicate with SDN Controller via vendor-specific APIs
• SDN Controller manages vSwitches in Hypervisors

• Vmware NSX, Contrail, Nuage, Midokura, … 



2017

Kubernetes

…to Cluster Deployment on Logical Networks…

54

Master ‘VM’ Minion ‘VM’ Minion ‘VM’ Minion ‘VM’

Cluster Management Nodes - Logical Switch

Pod
1

Pod
3

Pod
5

Pod
2

Pod
4

Pod
6

etcd Kube
DNS

API 
Srv

Kube
DNS

Pod
1

Pod
2

Pod
3

Pod
5

Pod
6

Pod
4

Namespace ‘demo’ PODs – Logical Switch

Namespace ‘foo’ PODs - Logical Switch

kube-system PODs - Logical Switch

Logical Router Edge Router

Kube
Proxy

Kube
Proxy

Internet /
Corporate 
Network



2017

…to Multi-Cluster / Multi-Tenancy deployments

55

Multi-Tenancy deployment and Networking constrains



2017

Sample of Provisioning Workflow…

• tenant create tano-tenant -l 'vm 200, cont 1000, memory 2000 GB, ephemeral-disk.capacity
20000 GB, persistent-disk.capacity 20000 GB, sdn.floatingips 100'

• tenant set tano-tenant
• project create tano-project
• project set tano-project

56

• cluster create -n tano-kube1 -k KUBERNETES --
vm_flavor vm-sm --disk_flavor disk-sm --number-of 
masters 1 --number-of-etcds 1 --number-of-workers 10

• tenant apply-policy -f network-policy.yml

network_policy.yml



Q & A 



Thank You!

@cloudnativeapps
#vmwcna

vmware.github.io

blogs.vmware.com/cloudnative

microservices@vmware.com


